绪:
直方图可展示图像中的像素分布,是用以暗示数字图像中亮度分布的直方图,
标绘了图像中每个亮度值的像素数。
可以借助不雅察该直方图领会需要如何调整亮度分布。
本文本家儿要介绍opencv中绘制直方图的函数calHist的格局和用法;

工具/原料
- OpenCV 2410
方式/步骤
- 1
calcHist三种函数原型:
opencv中自带了求算图像直方图的函数calhist(),
函数原型如下:
①void calcHist( const Mat* images,
int nimages,
const int* channels,
InputArray mask,
OutputArray hist,
int dims,
const int* histSize,
const float** ranges,
bool uniform=true,
bool accumulate=false );
②void calcHist( const Mat* images,
int nimages,
const int* channels,
InputArray mask,
SparseMat& hist,
int dims,
const int* histSize,
const float** ranges,
bool uniform=true,
bool accumulate=false );
③void calcHist( InputArrayOfArrays images,
const vector<int>& channels,
InputArray mask,
OutputArray hist,
const vector<int>& histSize,
const vector<float>& ranges,
bool accumulate=false );

- 2
calcHist参数详解:
以第一个函数原型为例:
①const Mat* images:为输入图像的指针;
②int nimages:要计较直方图的图像的个数。此函数可觉得多图像求直方图,我们凡是环境下都只感化于单一图像,所以凡是nimages=1。
③const int* channels:图像的通道是一个数组,若是是灰度图像则channels[1]={0};若是是彩色图像则channels[3]={0,1,2};若是只是求彩色图像第2个通道的直方图则channels[1]={1};
④IuputArray mask:掩膜,仅对指定元素操作,默认环境设置为一个空图像,即:Mat()。
⑤OutArray hist:计较获得的直方图
⑥int dims:获得的直方图的维数,灰度图像为1维,彩色图像为3维
⑦const int* histSize:直方图横坐标的区间数。若是是10,则它会横坐标分为10份,然后统计每个区间的像素点总和
⑧const float** ranges:这是一个二维数组,用来指出每个区间的规模
⑨uniform参数表白直方图是否等距,
⑩accumulate与多图像下直方图的显示与存储有关;

- 3
注重的处所:
关于calHist计较直方图的成果hist,
hist的成果为统计的灰度级0,1,…,255的数目;
暗示一维或三维的矩阵;
对于直方图成果矩阵,拜候形式为:
cout<<hist.at<float>(i)<<endl;

- 4
灰度图的直方图绘制:
#include <opencv2\opencv.hpp>
#include <opencv2\highgui\highgui.hpp>
#include <opencv2\features2d\features2d.hpp>
#include <opencv2\core\core.hpp>
using namespace std;
using namespace cv;
int main()
{
Mat srcImage = imread("mask.jpg");
imshow("【原图】", srcImage);
int channels = 0;
MatND dstHist;
//接下来是直方图的每一个维度的柱条的数量
int histSize[] = { 256 };
//若是这里写当作int histSize = 256;
//那么下面挪用计较直方图的函数的时辰,该变量需要写 &histSize
//界说变量用来存储单个维度的数值的取值规模
float midRanges[] = { 0, 256 };
const float *ranges[] = { midRanges };
calcHist(&srcImage, 1, &channels, Mat(), dstHist, 1, histSize, ranges, true, false);
//calcHist 函数挪用竣事后,
//dstHist变量中将储存了直方图的信息;
//用dstHist的模版函数 at<Type>(i)获得第i个柱条的值
//at<Type>(i, j)获得第i个而且第j个柱条的值
Mat drawImage = Mat::zeros(Size(256, 256), CV_8UC3);
double g_dHistMaxValue;
minMaxLoc(dstHist, 0, &g_dHistMaxValue, 0, 0);
for (int i = 0; i < 256; i++)
{
int value = cvRound(dstHist.at<float>(i) * 256 * 0.9 / g_dHistMaxValue);
line(drawImage, Point(i, drawImage.rows - 1), Point(i, drawImage.rows - 1 - value), Scalar(255, 0, 0));
}
imshow("【直方图】", drawImage);
waitKey(0);
return 0;
}

- 5
彩色直方图的绘制:
int main()
{
Mat srcImage = imread("mask.jpg");
imshow("【原图】", srcImage);
int channels = 0;
MatND dstHist;
int histSize = 256 ;
float midRanges[] = { 0, 256 };
const float *ranges[] = { midRanges };
calcHist(&srcImage, 1, &channels, Mat(), dstHist, 1, &histSize, ranges, true, false);
//绘制蓝色通道
Mat b_drawImage = Mat::zeros(Size(256, 256), CV_8UC3);
double g_dHistMaxValue = 0;
minMaxLoc(dstHist, 0, &g_dHistMaxValue, 0, 0);
for (int i = 0; i < histSize; i++)
{
int value = cvRound(dstHist.at<float>(i) * 256 * 0.9 / g_dHistMaxValue);
rectangle(b_drawImage,
Point(i * 8, b_drawImage.rows - 1),
Point(i * 8 + 256 / histSize, b_drawImage.rows - 1 - value)
,Scalar(255, 0, 0), -1);
}
imshow("【蓝色通道的直方图】", b_drawImage);
//绘制绿色通道
channels = 1;
calcHist(&srcImage, 1, &channels, Mat(), dstHist, 1, &histSize, ranges, true, false);
Mat g_drawImage = Mat::zeros(Size(256, 256), CV_8UC3);
minMaxLoc(dstHist, 0, &g_dHistMaxValue, 0, 0);
for (int i = 0; i < histSize; i++)
{
int value = cvRound(dstHist.at<float>(i) * 256 * 0.9 / g_dHistMaxValue);
rectangle(g_drawImage,
Point(i * 8, g_drawImage.rows - 1),
Point(i * 8 + 256 / histSize, g_drawImage.rows - 1 - value),
Scalar(0, 255, 0), -1);
}
imshow("【绿色通道的直方图】", g_drawImage);
//绘制红色通道
channels = 2;
calcHist(&srcImage, 1, &channels, Mat(), dstHist, 1, &histSize, ranges, true, false);
Mat r_drawImage = Mat::zeros(Size(256, 256), CV_8UC3);
minMaxLoc(dstHist, 0, &g_dHistMaxValue, 0, 0);
for (int i = 0; i < histSize; i++)
{
int value = cvRound(dstHist.at<float>(i) * 256 * 0.9 / g_dHistMaxValue);
rectangle(r_drawImage,
Point(i * 8, r_drawImage.rows - 1),
Point(i * 8 + 256 / histSize, r_drawImage.rows - 1 - value),
Scalar(0, 0, 255), -1);
}
imshow("【红色通道的直方图】", r_drawImage);
waitKey(0);
return 0;
}

- 6
【注】:
calhist()函数求得的直方图返回值是一个一维或三维等的矩阵;不是二维;
经由过程hist.at<float>(i)格局拜候;

注重事项
- hist.at(i):拜候的格局
- 彩色直方图的生当作;










